B=1:2 i
AE:EC=2:1. Punkt F jest punktem przecięcia prostych CD i EB. Wyznacz jaką część pola ABC
stanowi czworokąt ADFE.
P− pole ΔABC
| 1 | 1 | |||
PΔADC= | P⇔3v+w= | P | ||
| 3 | 3 |
| 1 | 1 | |||
PΔCEB= | P⇔v+s= | P | ||
| 3 | 3 |
| 1 | 1 | |||
3v+w= | P⇔w= | P−3v | ||
| 3 | 3 |
| 1 | ||
5v+4*( | P−3v)=P | |
| 3 |
| 1 | ||
5v−12v=− | P | |
| 3 |
| 1 | ||
7v= | P | |
| 3 |
| 1 | 1 | 3 | 4 | |||||
v= | P i w= | P− | P= | P | ||||
| 21 | 3 | 21 | 21 |
| 6 | 2 | |||
PADFE=2v+w= | P= | P | ||
| 21 | 7 |
| 2 | ||
PADFE= | P | |
| 7 |
I jeszcze metoda ode mnie
PABC=P
| P | ||
PADC= | ||
| 3 |
| P | ||
PBCE= | ||
| 3 |
| EC | AD | BN | |||
* | * | =1 | |||
| EA | DB | NC |
| BN | 4 | ||
= | |||
| NC | 1 |
| BF | BD | BN | |||
= | + | ||||
| FE | DE | NC |
| BF | 6 | ||
= | |||
| FE | 1 |
| 1 | P | |||
PEFC= | *PBCE= | |||
| 7 | 21 |
| 6P | 2P | |||
PADFE=PADC−PECF= | = | |||
| 21 | 7 |
Kiedyś pokazałem na forum takie rozwiązanie tego zadania:
P1, P2, P3 − pola trójkątów.
2*PADC = PDBC ⇒ 2(P1 + 2P1 + P2) = 2P2 + P3 ⇒ P3 = 6P1
2*PEBC = PABE} ⇒ 2(P1 + P3) = 2P1 + P2 + 2P2
2(P1 + 6P1) = 2P1 + 3P2 ⇒ P2 = 4P1
Pole trójkąta ABC: P = P1 + 2P1 + P2 + 2P2 + P3 = 21P1
Pole czworokąta ADFE: 2P1 + P2 = 6P1
| PABC | 6P1 | 2 | |||
= | = | ||||
| PADFE | 21P1 | 7 |