Mamy
| y2 | ||
b2 x2 + a2 y2 = a2 b2 ⇔ U{x2}[a2} + | = 1 − r − nie elipsy | |
| b2 |
| b2 | x2 | |||
y2 = b2 − | x2 = b2*( 1 − | ) | ||
| a2 | a2 |
| x2 | ||
y = b √ 1 − | ||
| a2 |
| b | ||
y = | √a2 − x2 | |
| a |
| b | b | |||
P = 4x* | √a2 − x2 = | *√ 16x2*(a2 − x2) | ||
| a | a |
| a | ||
= 32x *( a2 − 2 x2) = 0 ⇔ x = | ||
| √2 |
| a | ||
Łatwo zauważyć, że dla x = | funkcja f osiąga maksimum, czyli pole P | |
| √2 |
| b | b | a2 | b | a | b | |||||||
y = | *√a2 − x2 = | *√a2 − | = | * | = | |||||||
| a | a | 2 | a | √2 | √2 |
| a | b | |||
Pmax = 4x*y = 4* | * | = 2a*b | ||
| √2 | √2 |