| π | π | 1 | ||||
sin(x+ | )sin(x− | )=− | w przedziale <0, 2π > | |||
| 3 | 3 | 2 |
| √3 | √3 | 1 | ||||
zrobiłam sin(x+ | ) sin(x− | ) = − | ||||
| 2 | 2 | 2 |
| a + β | α − β | |||
raczej chodzi tu o zależność: −2sin | sin | = cosα − cosβ | ||
| 2 | 2 |
| π | π | 1 | ||||
sin(x + | ) sin(x − | ) = − | /*(−2) | |||
| 3 | 3 | 2 |
| π | π | |||
−2sin(x + | ) sin(x − | ) = 1 | ||
| 3 | 3 |
| π | α + β | π | α − β | |||||
x + | = | i x − | = | |||||
| 3 | 2 | 3 | 2 |
| (α+β) | α−β | |||
a ta zależność −2sin | sin | = cosα − cosβ | ||
| 2 | 2 |
| π | π | 1 | ||||
sin ( x + | )*sin( x − | ) = − | ; x ∊ < 0 ; 2π > | |||
| 3 | 3 | 2 |
| 2π3 + 2x | 2x − 2π3 | |||
sin( | )*sin( | ) = − 0,5 / *2 | ||
| 2 | 2 |
| 2π3 + 2x | 2x − 2π3 | |||
2 sin( | )*sin ( | ) = − 1 | ||
| 2 | 2 |
| α + β | β − α | |||
cos α − cos β = 2 sin | *sin | |||
| 2 | 2 |
| 2π | ||
cos | − cos 2x = − 1 | |
| 3 |
| π | π | |||
2x = − | + 2π*k lub 2x = | + 2π*k | ||
| 3 | 3 |
| π | π | |||
x = − | + π*k lub x = | + π*k , gdzie k jest dowolną liczbą | ||
| 6 | 6 |
| π | 7 | |||
x1 = | , x2 = | π | ||
| 6 | 6 |