matematykaszkolna.pl
s stevcio: Dany jest odcinek o końcach A( −5,−3) B( 7, 1): a) wyznacz rownanie prostej, w ktorej zawarta jest symetralna tego odcinka b)wyznacz rownanie okregu o srednicy AB ja bym zrobil tak: −wyznaczyl rownanie prostej z ukladu rownan −nastepnie wyznaczyl srodek odcinka i prosta prostopadla(a bede mial z prostej tylko odwrotnie i znak, a b bede mial z y srodka) no i podpunkt a zrobiony b)obliczyl dlugosc odcinka, podzielil na 2 no i srodek mam, i tylko podstawic do wzoru okregu dobrze mysle?
16 lut 15:27
Cash18: Tak, możesz obliczyć prostą ze wzoru https://matematykaszkolna.pl/strona/1223.html
16 lut 15:31
stevcio: o, a ja zawsze uklad rownan robilem, ale w sumie to jest podobne
16 lut 15:32
Cash18: No wiadomo bez różnicy, układ też jest ok
16 lut 15:33
Bogdan: albo tak:
 4 1 
prosta k1 zawierająca punkty A i B: y = a1x + b1, a1 =

=

 12 3 
Środek odcinka AB: C = (1, −1) Symetralna AB przechodząca przez C k2: y = a2x + b2, k2 ⊥ k1 ⇒ a2 = −3 k2: y = −3(x − 1) − 1 ⇒ y = −3x + 2
16 lut 15:37
stevcio: a=3
16 lut 15:44
Bogdan: do czego stevcio odnosi się twój zapis: a = 3 ?
16 lut 15:46
stevcio: masz a=13 a mi wyszlo 3
16 lut 15:46
stevcio: nie dobrze masz, sorry
16 lut 15:47
Bogdan: a jak Ci to wyszło?
16 lut 15:47
stevcio: nie nic, bo przez pomylke przez 4 podzielilem a nie 12
16 lut 15:48
Bogdan:
 y1 − y2 
a =

dla x1≠x2
 x1 − x2 
16 lut 15:48
stevcio: a o co chodzi z tym? k2: y = −3(x − 1) − 1 wiem skad a jest
16 lut 15:56
Bogdan: równanie prostej zawierającej punkt P(x0, y0) i mającej współczynnik kierunkowy a: y = a(x − x0) + y0
16 lut 16:00
stevcio: a b to dlugosc odcinka na 2, i za a i b wspolrzedne srodka?
16 lut 16:08