| 5 | ||
y'= | *(7x+sin2x−π)1/4 = | |
| 4 |
| 5 | ||
y'= | *(7x+sin2x−π)1/4*(7x+sin2x−π)' | |
| 4 |
| 5 | ||
y'= | *(7x+sin2x−π)1/4*(7+2cosx2) | |
| 4 |
| 4x5 −√3 +cos3x | ||
d) y= | ||
| lnx |
| (4x5 −√3 +cos3x)' *lnx − (4x5 −√3 +cos3x) *lnx' | ||
y' = | ||
| (lnx)2 |
| |||||||||||
y'= | |||||||||||
| 2ln|x| |
| 5 | ||
y' = (4x −sinx) *ln5x + (√2 +2x2 −cosx)* | ||
| x |
| 5x2 −√3 +lnx | ||
f) y= | ||
| cos4x |
| (5x2 −√3 +lnx)' *cos4x − (5x2 −√3 +lnx)* cos4x' | ||
y'= | ||
| (cos4x)2 |
| |||||||||||
y'= | |||||||||||
| cos4x2 |
a) (sin2x)' = 2cos2x
b) ok
c) ok tylko brakuje nawiasu
d) w mianowniku (lnx)2
| 1 | ||
e) 4x+sinx (ln5x)'= | ||
| x |
| 1 | ||
Dziękuje za sprawdzenie Mam pytanie dalczego (ln5x)' = | ? Nic z tą piątką nie robimy? | |
| x |
| 1 | 5 | 1 | ||||
robimy=skracamy: (ln5x)'= | *(5x)'= | = | ||||
| 5x | 5x | x |