Granice Funkcji
SheQ: Oblicz granice f(x) gdy x→−
∞ , x→0
− , x→0
+ , x→+
∞
3 cze 05:02
Artur z miasta Neptuna:
Chodziles/−as na zajecia? w czym wlasciwie jest problem?
Granice 'w zerze' to poprostu podstawienie za x liczby 0
3 cze 07:18
SheQ: Nie proszę o wywiad tylko o rozwiązania, a najlepiej sposoby rozwiązania gdańszczaninie :3
3 cze 07:25
Artur z miasta Neptuna:
A moze jeszcze mam za Cebie pojsc na egzamin i go zaliczyc na 5.0? podstawowe elementy liczenia
granic MUSISZ znac ... jezeli nie znasz to albo olewane byly cwiczenia przez Ciebie albo po
prostu studia inne jak humanistyczne to nie twoja broszka.
Badz zly/−a ze jestem taki paskudny i nie chce Ci 'pomoc' ... ale danie gotowca to nie jest
pomoc
3 cze 07:32
SheQ: A to powyższe zadanie każe czytającemu iść na jakiś egzamin? Wow w takim razie czytanie ze
zrozumieniem mi się kłania, z tego co widzę nawet studia humanistyczne mi odpadają hahaha xD
Nie no spoko, wiesz ja się w ogóle takimi rzeczami nie przejmuję. Więc jeżeli 'bycie paskudnym'
sprawia że czujesz się jakoś lepiej czy coś, to feel free. ; d
Regardless...
Proszę nadal o pomoc w rozwiązaniu
3 cze 07:43
wredulus_pospolitus:
Jestem po prostu wyznawcą 'trudnego wychowywania' a nie 'beztroskiego'

w sumie sam sobie zaprzeczać będę ale co mi tam ... chwilę czasu przed kompem jestem a więc:
gdy x−>0 to 4
x −> 4
0 = 1
czyli:
gdy x−>0 to (4
x+2) −> 1+2 = 3
analogicznie mianowik ... brak symbolu nieoznaczonego ... piszesz granicę
gdy x−> −
∞ to 4
x −> [4
−∞] i teraz albo szybko w głowie pojawia Ci się wykres funkcji
potęgowej f(x) = a
x dla a>0
https://matematykaszkolna.pl/strona/187.html ... albo z własności potęg piszesz sobie że przecież
| | 1 | |
4−∞ = |
| ... i piszesz −> 0 |
| | 4∞ | |
a więc
gdy x−> −
∞ to (4
x + 2) −> 0+2 = 2
analogicznie mianownik ... brak symbolu nieoznaczonego ... piszesz granicę
gdy x−>
∞ to 4
x −>
∞
czyli
gdy x−>
∞ to (4
x + 2) −> [
∞+2] = +
∞
analogicznie mianownik ... no i mamy symbol nieoznaczony

... a więc trzeba przekształcić
| | ∞ | |
jednym ze standardowych przekształceń w przypadku symbolu nieoznaczonego |
| jest |
| | ∞ | |
podzielenie licznika i mianownika przez 'największy' element mianownik (w tym przypadku przez
6
x)
po podzieleniu już nie ma symbolu nieoznaczonego i zapisujesz granicę po dokładnym
przeanalizowaniu wyrażenia
3 cze 07:53
SheQ: Sposób w takim razie mam dobry, mam tylko nadzieję że wyniki mi się zgadzają.
Dzięki wredoto ; *
3 cze 08:00
Artur z miasta Neptuna:
To podaj swoje wyniki − czy od tego zaczac nie moglas?
3 cze 08:09
SheQ: x−>0
+
x−>0
−
lim f(x) = 0
x−>+
∞
x−>−
∞
3 cze 08:19
wredulus_pospolitus:
w 0 źle
| | 2 | |
w +/− ∞ dobrze (ale |
| można skrócić jeszcze) |
| | 8 | |
3 cze 08:29