matematykaszkolna.pl
funkcja logarytmiczna marek: Do wykresu funkcji f(x)=ax należny punkt (log23,9) a) Oblicz a 9=alog23 32=alog23 log23=2 log23=22 czy ja dobrze robię? jak sie za to zabrać ? jak sie za to zabrać ?
16 kwi 11:11
irena_1: alog23=9 log23*log2a=log29 log23*log2a=log232 log23*log2a=2log23 log2a=2 a=4
16 kwi 11:17
aniabb: 9=alog23 obustronnie log2 log29=log2alog23 2log23=log2a * log23 2=log2a a=22=4
16 kwi 11:18
marek: trochę nie rozumiem jak wyszłaś do takiego rozwiązania log23 * log2a= log29 tutaj ten log23 jest w wykładniku liczby "a" a się nagle zrobiło mnożenie z tego
16 kwi 11:26
16 kwi 11:27
marek: ok już rozumiem wielkie dzięki dla was Drogie Panie emotka
16 kwi 11:27
16 kwi 11:27
marek: Pozdrawiam emotka
16 kwi 11:28
marek: aniabb− tego mi było trzeba bardzo dziękuję za pomoc emotka
16 kwi 11:28
marek: rysunekNaszkicuj wykresy g(x)= (x+1) i h(x)=(−x)+3 podaj rozwiazanie równania g(x)=h(x) LEGENDA: czerwony = y=4x zioleny= y=4x+1 pomarańczowy = y=4−x+3 4x+1=4−x+3
 1 
4x *4=

+3
 4x 
czy jeszcze mógłbym liczyć na pomoc w rozwiazaniu tego równania ?
16 kwi 12:11
aniabb: jak widać z rysunku x=0 i faktycznie 4=1+3 więc x=0 skoro kazali narysować to warto tego użyć
16 kwi 12:14
marek: aż głupio mi się zrobiło że nie spojrzałem na to emotka dziękuję
16 kwi 12:15
irena_1:
 1 
4*4x=

+3 /*4x
 4x 
4*42x=1+3*4x 4x=t>0 4t2=1+3t 4t2−3t−1=0 Δ=9+16=25
 3−5 3+5 
t1=

<0 lub t2=

=1
 8 8 
t=1 4x=1 x=0
16 kwi 12:16
marek: irena1 dziękuję serdecznieemotka to bardzo mi pomogło emotka
16 kwi 12:19