| dx | ||
∫ | ||
| x4+1 |
| 1 | Ax+B | Cx+D | |||
= | + | ||||
| x4+1 | x2+√2x+1 | x2−√2x+1 |
| dx | 1 | 1 | √2x | |||||
∫ | = | |(x2+√2x+1)(x2−√2x+1)|+ | arctn( | )+C | ||||
| x4+1 | 2√2ln | √2 | x2−1 |
'
jakby w liczniku było x3 to tak, ale tak nie jest
| dx | 2dx | |||
∫ | = ∫ | = 2arctg(√2x+1) + C | ||
| x2+√2x+1 | (√2+1)2 + 12 |
| dx | 2dx | |||
∫ | = ∫ | = 2arctg(√2x−1) + C | ||
| x2−√2x+1 | (√2−1)2 + 12 |
| √2x+1 + (√2x − 1) | √2x | |||
2arctg( | ) = arctg | |||
| 1−(√2x+1)(√2x−1) | 1−x2 |
Dzięki za poprawkę
| 1+x2 | ||
I + J = ∫ | dx | |
| x4+1 |
| |||||||||||
I + J = ∫ | |||||||||||
|
| |||||||||||
I + J =∫ | |||||||||||
|
| 1 | ||
t = x− | ||
| x |
| 1 | ||
dt = (1+ | )dx | |
| x2 |
| dt | 1 | 1 | |||||||||||||
I+J = ∫ | = | ∫ | dt | ||||||||||||
| t2+2 | 2 |
|
| 1 |
| ||||||||||||
I+J = | ∫ | dt | |||||||||||
| √2 |
|
| √2 | √2 | 1 | ||||
I+J = | arctg( | (x− | )) + C1 | |||
| 2 | 2 | x |
| 1 − x2 | ||
I − J = ∫ | dx | |
| x4+1 |
| x2 − 1 | ||
I − J = −∫ | dx | |
| x4+1 |
| |||||||||||
I − J = −∫ | dx | ||||||||||
|
| |||||||||||
I − J = −∫ | dx | ||||||||||
|
| 1 | ||
u = x+ | ||
| x |
| 1 | ||
du = (1− | )dx | |
| x2 |
| du | ||
I − J = −∫ | ||
| u2−2 |
| √2 | (u−√2)−(u+√2) | |||
I − J = | ∫ | du | ||
| 4 | (u−√2)(u+√2) |
| √2 | 1 | 1 | ||||
I − J = | (∫ | du − ∫ | du) | |||
| 4 | u+√2 | u − √2 |
| √2 | u+√2 | |||
I − J = | ln| | |+C2 | ||
| 4 | u−√2 |
ale mamy lepsze metody https://mathdf.com/int/pl/