| 4−n2 | ||
limn→∞ | =−1 | |
| n2+n |
https://matematykaszkolna.pl/forum/168847.html
| 4−n2 | ||
| | − (−1)|<ε. | |
| n2+n |
| 4−n2 | 4+n | n+n | 2 | |||||
| | − (−1)| = | | | < | | | = | |||||
| n2+n | n2+n | n2+n | n+1 |
| 2 | ||
< ε | ||
| n+1 |
| 2 | ||
n+1 > | ||
| ε |
| 2−ε | ||
n > | , | |
| ε |
| 2−ε | ||
to wystarczy wziąć k = [ | ]+1 − dla wszystkich n ≥ max{4,k} wyżej wypisane nierówności | |
| ε |
| 4+n | n+n | |||
Uwaga. Takie momenty, jak | | | < | | | to kwestia indywidualna (równie | ||
| n2+n | n2+n |