Oblicz pochodną p{(x^2+a}
d0an: Oblicz pochodną [ln(x+√(x2+a)]' =?
1. Obliczam (x+√(x2+a)'= 1 + 2x+12√(x2+a (nie wiecie co trzeba zrobić, żeby te
ułamki się ze sobą nie ,,zlewały?)
2. [ln(x+√(x2+a)]' = [ln(x+√(x2+a)] * (x+√(x2+a)
Tylko, że w wyniku powinien wyjść ładne rozwiązanie, a uzyskuje dość pokrętne.
21 lis 16:18
21 lis 16:21
d0an: Właśnie w momencie punktu 1. wynik mi źle wychodzi
21 lis 16:33
Krzysiek: | | 1 | | 1 | | x+√x2+a | |
(ln(x+√x2+a) )' = |
| *(x+√x2+a)' = |
| * |
| |
| | x+√x2+a | | x+√x2+a | | √x2 +a | |
21 lis 16:36
d0an: Aj, nie potrzebnie się namęczyłeś. Źle mi wychodzi wynik w tym działaniu: (x+√(x2+a)'
21 lis 16:38