Basia:
(
n+2n−1)
n+1 =
(
n−1+3n−1)
n+1 =
(1 +
3n−1)
n+1 =
m =
n−13
3m = n−1
n = 3m+1
n+1 = 3m+2
jeżeli n→
∞ to m →
∞
lim
n→∞(
n+2n−1)
n+1 =
lim
m→∞(1 +
1m)
3m+2 =
lim
m→∞(1 +
1m)
3m*lim
m→∞(1 +
1m)
2 =
lim
m→∞[(1 +
1m)
m]
3*lim
m→∞(1 +
1m)
2 =
e
3*(1+0)
2 = e
3