matematykaszkolna.pl
funkcja kwadratowa karol: liczbe 50 przedstaw w postaci sumy dwóch licz, tak aby suma kwadratów tych liczb była jak najmniejsza.
14 paź 13:37
karol: Sorry pomyłka, miało być jak największa.
14 paź 13:40
ICSP: mam przyedstawić za pomocą dwóch liczb zatem wezmę sobie : a − pierwsza liczba b − druga liczba mam zatem : a+b = 50 oraz a2 + b2 = − ma osiągać wartość minimalną (50−b)2 + b2 = 2500 − 100b + b2 + b2 = 2b2 − 100b + 2500 − funkcja kwadratowa. ramiona skierowane do góry osiąga najmniejszą wartość w bw. bw = 25 odp 50 = 25 + 25
14 paź 13:40
Saizou : ICSP a gdzie dziedzina i −1 na maturze
14 paź 13:41
Basia: x+b = 50 b = 50−x x2+b2 = x2+(50−x)2 = x2 + 2500 − 100x + x2 = 2x2 − 100x + 2500 znajdź x, dla którego funkcja y = f(x) = 2x2−100x+2500 przyjmuje wartość najmniejszą
14 paź 13:41
ICSP: jaka dziedzina znów
14 paź 13:42
Saizou : jak się pojawia funkcja to i musi pojawić się dziedzina
14 paź 13:43
karol: soryy ktoś sie pode mnie podszył i napisał :jak największa" ~ ma być JAK NAJMNIEJSZA. ps. jak chcesz być taki zabawny to idż się pobaw, nie powiem czym
14 paź 13:43
ICSP: kiedy dziedziną jest zbiór R pomija się ją przecież
14 paź 13:44
Basia: Saizu nie zawracaj głowy; liczby są dowolne i wiadomo, że D=R
14 paź 13:45
ICSP: https://matematykaszkolna.pl/forum/159620.html − zajmij się chociaż czymś pożytecznym
14 paź 13:47
karol: dobra dzięki Wam bardzo emotkaemotka ale chyba rzeczywiście dziedzinę ustali się przez to : 2b2−100b+2500>0
14 paź 13:47
ICSP: i widzisz co narobiłeś?
14 paź 13:47
karol: moze mi to ktos powiedziedż w koncu a nie robic jakieś głupie podchody, to ma być tak dziedzina czy nie ?
14 paź 13:48
ICSP: Dziedziną jest zbiór liczb rzeczywistych. Nie musisz jej ustalać bo jest oczywista.
14 paź 13:49
Basia: przecież ICSP już Ci to rozwiązał do końca
14 paź 13:49
karol: ok , dzieki .tylko saizou mnie zmylił. bo w ksiązce miałem zadanie również optymalizacyjne i tam trzeba było ustalić dziedzine. juz sam nie wiem ...
14 paź 13:52
karol: a jeszcze mam pytanie dlaczego osiągną minimalna wartosc w bw?
14 paź 13:53
Saizou : no ale dziedziną chyba nie jest R
14 paź 13:56
karol: teraz to juz sam nie wiem .
14 paź 13:57
ICSP: To w takim razie Saizou podaj nam swoją dziedzinę.
14 paź 13:58
Saizou : D: a>0 i b>0 50−b>0 i b>0 −b>−50 i b>0 b<50 i b>0 zatem b∊(0:50)
14 paź 14:01
karol: a przeciez liczbe 50 można przedstawić w postaci 0+50
14 paź 14:02
Saizou : przepraszam co ja wypisuję z głupoty przecież tu może być dowolna liczba <za dużo zadań z figurami geometrycznymiemotka>
14 paź 14:03
karol: i wtedy nie bedzie się zgadzać, mam racje ?
14 paź 14:03
ICSP: a to nie mogę sobie wziąć liczby ujemnej ? Gdzie w treści zadania jest napisane ze nie mogę wziąć liczby −5
14 paź 14:03
Saizou : właśnie sobie to uświadomiłem
14 paź 14:04
karol: ok,ok. Już zrozumiałem. Dzięki ICSP emotkaemotka a i nie przejmuj się Saizou, każdemu pomyłki moga się zdarzać emotka
14 paź 14:05
Saizou : ale w ostatnim czasie coś za dużo tych pomyłek
14 paź 14:05
ICSP: Saizou ty masz jakąś chorobę z tą dziedziną : / Chcesz ją wszędzie ustalać
14 paź 14:05
Saizou : ICSP wydaje cie się
14 paź 14:09
karol: hehe, ale de fakto, wszystko już jest teraz jasne emotka
14 paź 14:09
karol: Także dzięki jeszcze raz i miłego dnia wszystkim życzę emotka
14 paź 14:10
ICSP: To rób teraz zadanie do którego link masz wyżej emotka
14 paź 14:11