| 3 | lnx+1 | |||
y' − | y = | |||
| x | x |
| 3 | ||
p = − | ||
| x |
| lnx+1 | ||
q = | ||
| x |
| 3 | ||
∫pdx = ∫− | dx = −3lnx | |
| x |
| 1 | lnx+1 | |||
y = | ∫qudx = x3∫ | dx = x3(ln|lnx+1| + c) | ||
| u | x |
| 1 | ||
y(1) = 13(ln|ln1+1| + c) = c = − | . | |
| 3 |
| 1 | ||
y(x) = x3(ln|lnx+1| − | ) | |
| 3 |
| 1 | lnx+1 | 3 | dx | |||||
y = | ∫qudx = x3∫ | dx = x3[− | (lnx+1) + 3∫ | ] = | ||||
| u | x4 | x3 | x4 |
| 3 | 9 | |||
= x3[− | (lnx+1) − | + c] = −3(lnx+1) − 9 + cx3. | ||
| x3 | x3 |
| 1 | 35 | |||
y(1) = −3(ln1+1) − 9 + c = −3 − 9 + c = c−12 = − | → c = | . | ||
| 3 | 3 |
| 35 | ||
y(x) = −3(lnx+1) − 9 + | *x3 | |
| 3 |
| 1 | lnx+1 | 1 | dx | |||||
y = | ∫qudx = x3∫ | dx = x3[−U{1}{3x3(lnx+1) + | ∫ | ] = | ||||
| u | x4 | 3 | x4 |
| lnx+1 | 1 | 3lnx + 3 | 1 | |||||
= x3[− | − | + c] = − | − | + cx3 = | ||||
| 3x3 | 9x3 | 9 | 9 |
| 3lnx + 4 | ||
= − | + cx3. | |
| 9 |
| 3ln1+4 | 4 | 1 | 4 | 3 | 1 | |||||||
y(1) = − | + c = c − | = − | → c = | − | = | . AHA! | ||||||
| 9 | 9 | 3 | 9 | 9 | 9 |
| 3lnx + 4 | 1 | 1 | ||||
y(x) = − | + | x3 = | (x3 − 3lnx − 4). ... | |||
| 9 | 9 | 9 |
| 1 | ||
− | (lnx+1). | |
| 3x3 |