matematykaszkolna.pl
Kombinatoryka Ania: w partii 30 monitorów jest 4 uszkodzonych. wybieramy trzy monitory. na ile sposobów mozna wybrac dwa uszkodzone.
19 sie 13:43
Gustlik:
 
nawias
30
nawias
nawias
3
nawias
 
|Ω|=
=...
  
 
nawias
2
nawias
nawias
4
nawias
 
nawias
1
nawias
nawias
26
nawias
 
|A|=
*
=...
   
 |A| 
P(A)=

=....
 |Ω| 
19 sie 13:50
Ania: to jaki bedzie wynik?
19 sie 14:00
Gustlik: Kombinacje − symbol Newtona
nawias
n
nawias
nawias
k
nawias
 n! 
=

 k!(n−k)! 
 
nawias
30
nawias
nawias
3
nawias
 30! 27!*28*29*30 
|Ω|=
=

{27!}=

=4060
  3! 27!*1*2*3 
 
nawias
4
nawias
nawias
2
nawias
 
nawias
26
nawias
nawias
1
nawias
 4! 
|A|=
*
=

2!}*26=6*26=156
   2! 
 156 
P(A)=

≈0,0384
 4060 
19 sie 20:16
Gustlik:
 4! 
Mała poprawka − w |A| ma być

*26 wkradła się "literówka", ale wynik jest dobry.
 2!*2! 
19 sie 20:17
Jack: przy czym ten pierwszy wpis i stosowany w nim zapis dwumianu Newtona przy zdarzeniach A jest niewłaściwy (powinno być tak, jak zapisał w drugim poscie) − dalej już Gustlik stosuje zapis poprawnie
19 sie 20:22
pomagacz: Tylko nie wiem czy przypadkiem nie policzyliście prawdopodobieństwa wylosowania dwóch uszkodzonych monitorów z trzech, wydaje mnie się, że |Ω| to ilość sposobów wylosowania 3 monitorów, a |A| to ilość wylosowania 2 uszkodzonych monitorów z 3, więc nie potrzeba liczyć dalej jak do |A|
19 sie 20:30
pomagacz: Bo |A| jest rozwiązaniem
19 sie 20:30
pomagacz: Albo źle myślę...
19 sie 20:31
Jack:
 
nawias
4
nawias
nawias
2
nawias
 
nawias
26
nawias
nawias
1
nawias
 
są 4 złe i 26 dobrych. My chcemy dwa złe, jeden dobry:
*
. Ω tez jest ok...
   
Moze czegos nie widzę, hm?
19 sie 20:48
Jack: aaa... w zadaniu nie ma mowy o prawdopodobieństwie − Gustlik dorobił sobie inne polecenie...
19 sie 20:49
Gustlik: No właśnie trochę się rozpędziłem z tym prawdopodobieństwem, wynik to 156.
19 sie 20:52
pomagacz: Czyli dobrze, że zwróciłem uwagę emotka
19 sie 21:18
Gustlik: Dobrze, że zwróciłe uwagę, Pomagaczu, ja się trochę zagalopowałem i zrobiłem wiecej, niż wymagało polecenie zadania, z przyzwyczajenia i z rozpędu obliczyłem prawdopodobieństwo wylosowania dwóch wadliwych monitorów, bo większość tego typu zadań jest na prawdopodobieństwo. A tu wystarczyło obliczyć |A|. Co do symbolu Newtona też za pierwszym razem wkradł się błąd wynikający z tego, że stosując zapis z literką C byłoby odwrotnie, ale to zauważylem i skorygowałem. Pozdrawiam emotka
19 sie 23:37