pomagacz:
1.
∫(x
3 + 1)cos(x) dx = ∫x
3cos(x)dx + ∫cos(x)dx =
∫x
3cos(x)dx = \\ u = x
3 dv = cos(x) \\ = x
3sin(x) − 3∫x
2sin(x)dx
\\ du = 3x
2 v = sin(x) \\
∫x
2sin(x)dx = \\ u = x
2 dv = sin(x) \\ = −x
2cos(x) +2∫xcos(x)dx
\\ du = 2x v = −cos(x) \\
∫xcos(x)dx = \\ u = x dv = cos(x) \\ = xsin(x) − ∫sin(x)
\\ du = 1 v = sin(x) \\
= x
3sin(x) − 3[−x
2cos(x) + 2[xsin(x) + cos(x)]] + sin(x) = x
3sin(x) + 3x
2cos(x) − 6xsin(x)
− 6cos(x) + sin(x) = x
3sin(x) − 6xsin(x) + sin(x) + 3x
2cos(x)− 6cos(x) = sin(x)(x
3 − 6x +
1) + cos(x)(3x
2 − 6)
chyba dobrze, liczyłem w pamięci ale jak tu jest tak samo jak tu:
http://www.wolframalpha.com/input/?i=integral%28%28x^3+%2B+1%29cos%28x%29%29
Trivial:
Takie rozbicie niewiele nam da. Druga całka to typowy przykład na rozkład na ułamki proste.
2x+4 | | 2x+4 | | A | | B | | C | |
| = |
| = |
| + |
| + |
| |
x3+2x2+x | | x(x+1)2 | | x | | x+1 | | (x+1)2 | |
2x+4 = A(x
2+2x+1) + B(x
2+x) + Cx
x
2: A + B = 0
x
1: 2A + B + C = 2
x
0: A = 4
A = 4
B = −4
C = −2
| 2x+4 | | 2 | |
∫ |
| dx = 4ln|x| − 4ln|x+1| + |
| + c. |
| x3+2x2+x | | x+1 | |