!
sin3x+sinx=0
sinx(sin2x+1)=0
sinx=0 v sin2x≠−1
x=π/2 +2kπ
2cos3x−cosx=0
cosx(2cos2x−1)=0
cosx=0 v cos2x=1/2
x=π/2+2kπ cosx=√2/2
t=x cosx= √2/2
x=π/4+2kπ v x=−π/4+2kπ
c) 2cos2x+sin2x=2cosx+1
cos2x−2cosx=0
cosx(cosx−2)=0
cosx=0 v cosx=2
x=π/2+2kπ v ?
| π | ||
b), c) cosx = 0 ⇒ x = | + kπ | |
| 2 |