| 10n+1−10 | 9n*10n − 10n+1 + 10 | |||
n10n − | = | ⇔ ∑i=0n−1i10i = | ||
| 9 | 9 |
| 9n*10n−10n+1+10 | ||
| 81 |
| 9n*10n − 9n | 9n*10n − 10n+1+10 | 10n+1−9n−10 | ||||
(*) = | − | = | ||||
| 81 | 81 | 81 |
| 10n+1−1 | ||
1+11+102+1003+... = ∑i=0n (10i+i) = ∑i=0n 10i + ∑i=0ni = | + | |
| 9 |
| n(n+1) | 2*10n+1−2+9n2+9n | 9n2+9n+2*10n+1−2 | ||||
= | = | |||||
| 2 | 18 | 18 |