matematykaszkolna.pl
granica w punkcie z mianownikiem zerowym Smok: Klasyk, a ja się głowię jak głupi. Jak się za to zabrać? Oblicz granicę przy x → 2
x2−1 

x−2 
24 lip 17:40
Basia: nie istnieje; trzeba policzyć lewostronną i prawostronną limx→2 (x2−1) = 3
 1 
limx→2

= −
 x−2 
 x2−1 
limx→2

= 3*(−) = −
 x−2 
 1 
limx→2+

= +
 x−2 
 x2−1 
limx→2+

= 3*(+) = +
 x−2 
24 lip 17:49
Smok.: Najgorsze jest to, że w książce Krysickiego i Włodarskiego "Analiza Matematyczna w Zadaniach" (PWN '71) jest podane rozwiązanie tego zadania − i wynosi 4. Nie mam pojęcia dlaczego, skoro tak właśnie zrozumiałem, że jeśli w mianowniku jest zero − to jest asymptota.
30 lip 16:22
Jack:
 x24 
nie zawsze jest asymptota, sprawdź czy nie powinno być czasem

...
 x−2 
30 lip 16:23
Smok.: Nie. Sprawdziłem kolejny raz − zadanie przepisałem prawidłowo. Hehehe.... gubię się. To co może jeszcze być kiedy mianownik daje zero?
30 lip 16:45
Jack: No to skoro jest taka odpowiedź, to prawdopodobnie literówkę popełnili.
 x 
Możesz dostać "lukę" w wykresie, np. f(x)=

=1, D: x∊R\{0}. Dostaniesz linię prostą na
 x 
poziomie 1 z wyjątkiem x=0 − tam będzie przerwa. Granica oczywiście istnienie i jest równa 1 (ponadto jest oczywiście ciągła w swojej dziedzinie). Ogólnie, chodzi więc o przypadek, gdy wraz z zerowaniem się mianownika zeruje się też licznik.
30 lip 17:14
Smok.: Tak. Kiedy zeruje się licznik i mianownik otrzymujemy oczywiście funkcję nieoznaczoną i musimy ją przekształcać. Ale to inna pieśń. Jednakże coś mi się nie bardzo widzi ta literówka w książce. Choć to wydanie z 71 roku, to nie jest bynajmniej pierwsze. Książka ma już ponad... 50 lat emotka. Mam też PDF z jakiegoś późniejszego wydania książki i zadanie jest to samo i ma takie samo rozwiązanie.
30 lip 17:26
Jack: 1. funkcja "nieoznaczona"? W każdym razie to właśnie ta "sama pieśń" − nie zawsze w punkcie wyrzuconym z dziedzina mamy asymptotę (i nie zawsze daje się taką funkcję łatwo przekształcić)! 2. Jeśli nie przyjmujesz takiego uzasadnienia, to masz dokładną odpowiedź Basi (poza tym wiele literówek znajdziesz u Krysickiego − co jakiś czas ktoś na coś trafia).
30 lip 18:39
Basia: Tam jest błąd w odpowiedzi albo w treści zadania, od nie wiem już, którego wydania, nie poprawiony. Prawdopodobnie jest to błąd drukarski w treści zadania i miało być tak jak pisze Jack:
x2−4 

x−2 
30 lip 18:59
Smok.: Ekhm.... No to mi daliście bobu.. emotka Dzięki.
31 lip 18:03