Oblicz całkę: ∫ e2x sin3x dx
| 1 | 1 | 3 | ||||
∫e2xsin3xdx = ∫( | e2x)'sin3xdx = | e2xsin3x − | ∫e2xcos3x = | |||
| 2 | 2 | 2 |
| 1 | 3 | 9 | |||
e2xsin3x − | e2xcos3x − | ∫e2xsin3xdx | |||
| 2 | 4 | 2 |
| 1 | 3 | 9 | ||||
∫e2xsin3xdx = | e2xsin3x − | e2xcos3x − | ∫e2xsin3xdx | |||
| 2 | 4 | 4 |
| 13 | 1 | 3 | |||
∫e2xsin3xdx = | e2xsin3x − | e2xcos3x | |||
| 4 | 2 | 4 |
| 1 | ||
∫e2xsin3xdx = | e2x(2sin3x − 3cos3x) + C | |
| 13 |