| y2 | 1 | y3 | y | |||||
a) y' = | − | teraz całkujemy obustronnie i otrzymujemy y = | − | +C | ||||
| 2 | 2 | 6 | 2 |
| y2 | ||
b) y*y' = cosx całkujemy obustronnie i otrzymujemy | = sinx+C ⇔ y = ± √2sinx+C | |
| 2 |
| dy | ||
2* | = y2−1 | |
| dx |
| dy | ||
2* | = 1 | |
| dx(y2−1) |
| dy | 1 | ||
= | |||
| dx(y2−1) | 2 |
| dy | 1 | ||
= | dx | ||
| y2−1 | 2 |
| 1 | y−1 | 1 | |||
ln ( | ) = | x+C | |||
| 2 | y+1 | 2 |
| y−1 | ||
ln ( | ) = x+C | |
| y+1 |
| y−1 | |
= Cex | |
| y+1 |
| 1+Cex | ||
y = | ||
| 1−Cex |