| y | ||
odp: ln | ||
| √y2+1 |
| dy | dt | 1 | 1 | |||||
∫ | = |t=y2 dt=2ydy⇒ | =ydy | = | ∫ | dt = | ||||
| y(y2+1) | 2 | 2 | t(t+1) |
| 1 | 1 | 1 | 1 | 1 | 1 | 1 | ||||||||
= | ∫ ( | − | )dt = | ∫ | dt − | ∫ | dt = | |||||||
| 2 | t | t+1 | 2 | t | 2 | t+1 |
| 1 | 1 | 1 | 1 | |||||
= | u=t+1 du=dt| = | ln|t| − | ∫ | du + C = | ( ln|t| − ln|u|) + C = | ||||
| 2 | 2 | u | 2 |
| 1 | 1 | |||
= | ( ln|y2| − ln|t+1| ) + C = | ( ln|y2| − ln|y2+1| ) + C | ||
| 2 | 2 |