| 2a1+(n−1)r | ||
Rozpisujemy każdą sumę ze wzoru: Sn= | *n, czyli: | |
| 2 |
| 2a1+(k−1)r | ||
Sk= | *k | |
| 2 |
| 2a1+(s−1)r | ||
Ss= | *s | |
| 2 |
| 2a1+(k−1)r | |
*k=s | |
| 2 |
| 2a1+(s−1)r | |
*s=k | |
| 2 |
| 2a1+(k−1)r | |
*k=s / : k | |
| 2 |
| 2a1+(s−1)r | |
*s=k / : s | |
| 2 |
| 2a1+(k−1)r | s | ||
= | |||
| 2 | k |
| 2a1+(s−1)r | k | ||
= | |||
| 2 | s |
| s | ||
2a1+(k−1)r=2 | ||
| k |
| k | ||
2a1+(s−1)r=2 | Odejmujemy obustronnie: | |
| s |
| s | k | |||
2a1+(k−1)r−2a1−(s−1)r=2 | −2 | |||
| k | s |
| s2−k2 | ||
(k−1−s+1)r=2 | ||
| sk |
| (s−k)(s+k) | ||
−(s−k)r=2 | /:(s−k) | |
| sk |
| s+k | ||
−r=2 | ||
| sk |
| −2(s+k) | ||
r= | ||
| sk |
| s | ||
2a1+(k−1)r=2 | podstawiamy przykładowo do tego równania i liczymy a1 | |
| k |
| −2(s+k) | s | |||
2a1+(k−1) | =2 | |||
| sk | k |
| 2s | 2(k−1)(s+k) | |||
2a1= | + | |||
| k | sk |
| 2s2+2(k−1)(s+k) | ||
2a1= | ||
| sk |
| −2(s+k) | ||
r= | ||
| sk |
| 2a1+(s+k−1)r |
| |||||||||||||||
Ss+k= | *(s+k)= | *(s+k)= | ||||||||||||||
| 2 | 2 |
| ||||||||
= | *(s+k)= | |||||||
| 2 |
| 2s2+2(k−1)(s+k)−2(s+k)(s+k−1) | ||
= | *(s+k)= | |
| 2sk |
| s2+(k−1)(s+k)−(s+k)(s+k−1) | ||
= | *(s+k)= | |
| sk |
| s2+(s+k)(k−1−s−k+1) | ||
= | *(s+k)= | |
| sk |
| s2−s(s+k) | ||
= | *(s+k)= | |
| sk |
| s2−s2−sk | ||
= | *(s+k)= | |
| sk |
| −sk | ||
= | *(s+k)=−(s+k) | |
| sk |