| ex − 1 | ||
√ex − 1 = | ||
| √ex − 1 |
| ex − 1 | ex | 1 | ||||
∫ | dx = ∫ | dx − ∫ | dx = (1) − (2) | |||
| √ex − 1 | √ex − 1 | √ex − 1 |
| ex | ex | |||
(1) = ∫ | dx = [ √ex − 1 = t, | dx = dt ] = | ||
| √ex − 1 | 2√ex − 1 |
| 1 | ||
(2) = ∫ | dx | |
| √ex − 1 |
| 2t | ||
dx = | ||
| t2 + 1 |
| 2t | 2 | |||
... = ∫ | dt = ∫ | dt = 2arctgt = 2arctg√ex − 1 | ||
| t(t2 + 1) | t2 + 1 |
| a | ||
ano dlatego, że | =c ⇒ c*b=a ![]() | |
| b |
| √ex − 1 | √ex − 1 | ex − 1 | ||||
√ex − 1 = | * | = | | |||
| 1 | √ex − 1 | √ex − 1 |