| |x−1| | ||
f(x) = | ||
| x−1 |
| tgx | ||
Oblicz granicę funkcji w punkcie x=0 f(x)= | ||
| sinx |
| 1 | ||
Oblicz granicę funkcji, gdzie x−>0 f(x)=xsin | ||
| x |
| ⎧ | x2−2x2x−4 dla x≠2 | ||
| f(x)= | ⎩ | 2 dla x=2 |
| |x − 1| | ||
f(x) = | ||
| x − 1 |
| x − 1 | ||
limx→1+f(x) = limx→1+ | → 1 | |
| x − 1 |
| − x + 1 | ||
limx→1−f(x) = limx→1− | → − 1 | |
| x − 1 |
| tgx | 1 | 1 | ||||
limx → 0 | = limx → 0 | → | = 1 | |||
| sinx | cosx | 1 |
| 1 |
| ||||||||||||
limx → 0xsinx | = limx → 0 | → 0 | |||||||||||
| x |
|
| x2 − 2x | x(x − 2) | x | ||||
limx → 2 | = limx → 2 | = limx → 2 | → 1 | |||
| 2x − 4 | 2(x − 2) | 2 |