matematykaszkolna.pl
d afk: Mamy liczbę A i liczbę B, która powstała z przestawienia cyfr liczby A. Czy A - B może być złożone z samych jedynek?
28 lut 11:59
Basia: łatwo udowodnić dla liczb dwucyfrowych, że nie A = 10a+ b B = 10b + a A - B = 10a + b - 10b - a = 9a - 9b = 9(a-b) A - B = 1 lub A - B = 11 9(a-b) = 1 a-b = 1/9 niemożliwe bo a,b∈N ⇒ a-b∈C 9(a-b) = 11 a-b = 11/9 niemożliwe j.w. dla dowolnej liczby n cyfrowej dowód jest identyczny tylko bardzo dużo pisania spróbuj sam dla 3 - cyfrowych i 4 - cyfrowych, a potem spróbuj uogólnić
28 lut 23:42