wektory
needhelp: Znajdź miarę kąta pomiędzy wektorami a i b, jeśli wiadomo, że wektor a + 3* b jest prostopadły
do wektora 7*a−5*b oraz wektor a−4*b jest prostopadły do wektora 7*a−2*b.
Rozwiązywałem to tak:
(a+3b) o (7a−5b)=0
(a−4b) o (7a−2b)=0
Troche bede upraszczal zapis, nie daje strzaleczek nad literami (nie wiem jak), oraz pomine
niekiedy wart. bezwgl. podczas podawania dl. wektora, ale zapis powinien byc czytelny.
(a+3b) o (7a−5b)=7a
2−15b
2+16ab=0 (przy czym ab= a o b )
(a−4b) o (7a−2b)= 7a
2+8b
2−30ab=0
Z tego tworze sobie 2 inne rownania:
I) wyznaczam z obu rownan 7a
2 i przyrównuje:
15b
2−16ab=30ab−8b
2
23b
2=46ab
b
2=2ab
II) Pozbywam sie "ab"
7a
2−15b
2+16ab=0 //*15
7a
2+8b
2−30ab=0 //*8
105a
2−225b
2+240ab=0
56a
2+64b
2−240ab=0
+_____________________
161a
2−161b
2=0
a
2=b
2 ⇒ |a|=|b|
2ab= 2* |a|*|b|*cos(a,b)=b
2
cos (a,b)=1/2 ⇒ kąt wynosi 60 stopni...
W sumie to rozwiazalem sobie, ale nie bede usuwal bo moze komus sie przyda. Przynajmniej
znalazłem swój bład.