planimetria
wiki: Proszę o pomoc!
Napisz równania stycznych do okręgu o równaniu x2+y2=16 przechodzących przez punkt
A(6,0).
2 maj 20:35
Mateusz: y=ax+b
0=6a+b
b=−6a
y=ax−6a
ax−y−6a=0
Podstaw to wszystko pod wzór na odległość punktu (odległość to 4) od prostej
2 maj 20:53
wiki: Czy możesz sprawdzić,
Mateuszu, czy dobrze robię? Bardzo proszę.
| | Ia*0−1*0−6aI | |
d= |
| |
| | √a2+(−1)2 | |
6a = 4
√a2+1
3a = 2
√a2+1
9a
2=4(a
2+1)
5a
2=4
b=−6a
| | −12√5 | | 12√5 | |
Czyli b= |
| lub b= |
| |
| | 5 | | 5 | |
| | 2√5 | | 12√5 | |
Wtedy styczne będą: y= |
| x − |
| |
| | 5 | | 5 | |
Czy tak ma być?
2 maj 21:13
Eta:
ok
2 maj 21:14
wiki: Dziękuję bardzo.
2 maj 21:15