IBTI=IBGI=8√5
ICTI=ICFI=x r,x ∊ (0,+∞)
IDFI=IAGI=r
Z tw. Pitagorasa Δ EBC
(2r)2+(8√5−x)2=(8√5+x)2
4r2+320−16√5x+x2=320+16√5x+x2
4r2=32√5x
r2=8√5x
Z tw. Pitagorasa Δ FCS
x2+r2=102
x2+8√5x=100
x2+8√5x−100=0
Δ=320+400=720
√Δ=12√5
| −8√5−12√5 | ||
x1= | =−10√5∉(0,+∞) | |
| 2 |
| −8√5+12√5 | ||
x2= | =−2√5∊(0,+∞) | |
| 2 |
| a+b | 2r+x+8√5 | |||
P= | *h= | *2r=(2*4√5+2√5+8√5)*4√5=18√5*4√5=360 | ||
| 2 | 2 |