| ln(n+1) | ||
a) an= | ||
| 3n+1 |
| n4+2n2 | ||
b) bn= ln | ||
| n4+1 |
| √(n2+1)2n | ||
c) cn= | ||
| n√3n |
| 1 | ||
d) dn= | ||
| 3n−n3 |
| [(n2+1)1/2]1/n*[(2n)1/2]1/n | ||
n√cn = | = | |
| n1/n*[(3n)1/2]1/n |
| [(n2+1)1/2]1/n*(21/2) | |
} = | |
| [(n2)1/2]1/n*31/2 |
| √2 | n2+1 | ||
*[( | )1/2]1/n | ||
| √3 | n2 |
| n2+1 | |
→ 1 | |
| n2 |
| n2+1 | ||
[( | )1/2]1/n → 1 | |
| n2 |
| √2 | ||
n√cn → | < 1 | |
| √3 |
| 1 | ||
to ∑n=4 | jest szeregiem o wyrazach dodatnich | |
| 3n−n3 |
| 1 | 1 | |||
∑ | ≤ ∑ | a to jest szereg zbieżny | ||
| 3n−n3 | 3n |
| n4+2n2 | n4 | 1 | |||
> | = | ||||
| n4+1 | 2n4 | 2 |
| n4+2n2 | 1 | |||
∑ | ≥ ∑ | a to jest szereg rozbieżny | ||
| n4+1 | 2 |
| ln(n+1) | 1 | |||
∑ | ≥ ∑ | |||
| 3n+1 | 3n+1 |
| 1 | ||
no a bardzo łatwo pokazać (kryterium ilorazowe z szeregiem ∑ | ), że jest to szereg | |
| n |