yhm.
essh: Naszkicuj wykres funkcji f(x)=|2
x −4|+1 a nastepnie okresl liczbe rozwiazan rownania f(x)=k
2
w zaleznosci od wartosci parametru k.
wszystko zrobilem jak zawsze, wyszlo mi :
1 rozwiazanie dla k∊(
√5 ; +∞) ∪ k=1
2 rozwiazania dla k∊(1;
√5 )
0 rozwiazan dla k∊(−∞;1)
natomiast w odpowiedziach jest :
1 rozwiazanie dla k∊(−∞;−
√5)∪(
√5;+∞)∪{−1;1}
2 rozwiązania dla k∊(−
√5;−1)∪(1;
√5)
0 rozwiazan dla k∊(−1;1)
niektore się pokrywają ale tam wychodzi jakas symetria dziwna

nie wiem o co biega z tym
27 kwi 10:47
bart: moim zdanie Ty masz dobrze to rozwiazane
27 kwi 12:56
essh: kiełbasa sadzi inaczej xD
27 kwi 12:57
essh: kiełbasa sadzi inaczej xD
27 kwi 12:57
bart: no kielbasie cos nie wyszlo

masz bezwzgledna wartosc, czyli na bank nic nie bedzie lezec ponizes osi x.. przesuwasz ten
wykres o 1 w gore wiec nawet nie bedzie rozw miedzy 0 a 1..
wiec 1 rozw dla liczb ujemnych, jak kielbasa podal juz jest nieprawidlowe

masz dobrze!
27 kwi 13:00
27 kwi 13:01
uhu: 1 dla k2=1 v k2>5 → k=1 v k = −1 , (k−√5)(k+√5)
tak robiłaś ?
27 kwi 13:04
essh: wlasnie kurde xD dla k
2 =5 to rownowazne jest k=
√5 i k=−
√5 xD tak nie 'robiłem' xD
samcem jestem samcem

kminie juz

dzieki
27 kwi 13:06
energol: prawdopodobnie naszkicowałeś wykres dobrze ale kwadrat z liczby ujemnej tez daje liczbe
dodatnią. Lepiej to zobaczysz jak odbijesz cały wykres wzgledem osi x(powiedzmy "rozpatrzysz
go w obie strony)
27 kwi 13:06
uhu: ^^
27 kwi 13:08