| x | x | 5 | ||||
Rozwiąż równanie sin4 | + cos4 | = | w przedziale <−π;π> | |||
| 2 | 2 | 8 |
| x | x | 5 | ||||
sin4 | +(1−sin2 | )2− | =0 | |||
| 2 | 2 | 8 |
| x | ||
sin2 | =t | |
| 2 |
| 5 | ||
t2+1−2t+t2− | =0 | |
| 8 |
| 3 | ||
2t2−2t+ | =0 | |
| 8 |
| 1 | ||
t1=− | ||
| 4 |
| 3 | ||
t2= | ||
| 4 |
| x1 | 1 | |||
sin2 | =− | <−− sprzeczne bo kwadrat nie może być ujemny | ||
| 2 | 4 |
| x2 | 3 | |||
sin2 | = | |||
| 2 | 4 |
| x | √3 | |||
sin | = | |||
| 2 | 2 |
| x | π | |||
sin | =sin | |||
| 2 | 3 |
| x | π | ||
= | |||
| 2 | 3 |
| 2 | ||
x= | π | |
| 3 |
Pozdrawiam.
| 1 | ||
1 − | *(2*2*sinx2*cosx2*sinx2*cosx2)= 58
| |
| 2 |
| 5 | ||
1 −12*sin2x= | ||
| 8 |
| x | π | |||
bo jeszcze sin | =sin(π− | ) | ||
| 2 | 3 |
| x | 2 | |||
sin | =sin | π | ||
| 2 | 3 |
| 2 | ||
{x}{2}= | π | |
| 3 |
| 4 | ||
x= | π | |
| 3 |