PROSZĘ O POMOC! BADZRO PILNE!
łukasz: rozwiąż równanie :
| √3tg (x/3)| = 1
23 lut 18:05
Bogdan:
Rozwiązuję
23 lut 18:06
Bogdan:
|√3tg(x/3)| = 1.
Założenie: x/3 ≠ π/2 + k*π, k € C
x ≠ 3π/2 + k*3π
√3tg(x/3) = 1 lub √3tg(x/3) = -1 mnożymy obustronnie przez √3/3
tg(x/3) = √3/3 lub tg(x/3) = -√3/3
tg(x/3) = tg(π/6) lub tg(x/3) = -tg(π/6) => tg(x/3) =tg(-π/6)
x/3 = π/6 + k*π lub x/3 = -π/6 + k*π mnożymy obustronnie przez 3.
x = π/2 + k*3π lub x = -π/2 + k*3π
23 lut 18:15
łukasz: dzięki wielkie
23 lut 18:17
Zbyszek vel AtrurDitu: Bogdan jak możesz proszę o pomoc.
23 lut 18:18