| 1+2+3+...+(3n−1)+3n | ||
an= | ||
| n+(n+1)+(n+2)+...+(2n−1)+2n |
| |||||||
chyba tak to mozna zapisać | |||||||
|
| 21 | ||
a )n = 2 to a2 = | = | |
| 12 |
| 24 | ||
b )podstawiam 1 i wychodzi 2 czyli | czyli ciag malejący | |
| 12 |
| 21 | ||
cs czy na przykład ciąg 2, | ,................ 15,.............. | |
| 12 |
| b1+b3n | 1+3n | 3n(3n+1) | ||||
S3n = | *3n = | *3n = | ||||
| 2 | 2 | 2 |
| c1+cn+1 | n+2n | 3n(n+1) | ||||
Sn+1 = | *(n+1) = | *(n+1) = | ||||
| 2 | 2 | 2 |
| 3n(3n+1) | 2 | 3n+1 | ||||
an = | * | = | ||||
| 2 | 3n(n+1) | n+1 |
| 3(n+1)+1 | 3n+4 | |||
an+1 = | = | |||
| n+1+1 | n+2 |
| 3n+4 | 3n+1 | |||
an+1−an = | − | = | ||
| n+2 | n+1 |
| (3n+4)*(n+1)−(3n+1)(n+2) | |
= | |
| (n+1)(n+2) |
| 3n2+4n+3n+4−3n2−6n−n−2 | −2 | ||
= | < 0 dla każdego n∊N | ||
| (n+1)(n+2) | (n+1)(n+2) |
| 2 | ||
an+1−an = | > 0 | |
| (n+1)(n+2) |
| 1+2+3 | 6 | 4 | ||||
a1 = | = | = 2 = | ||||
| 1+2 | 3 | 2 |
| 1+2+3+4+5+6 | 21 | 7 | ||||
a2 = | = | = | ||||
| 2+3+4 | 9 | 3 |