:)
M4ciek:

W trapezie rownoramiennym jedna z podstaw jest dwa razy dluzsza od drugiej.Przekatna trapezu
dzieli kat przy dluzszej podstawie na polowy.Znajdz dlugosci bokow trapezu wiedzac, ze jego
pole jest rowne 3
√3.
P = 3
√3
6
√3 = 3a*h
2
√3 = a*h
I moje pytanie brzmi z czego tu wyznaczyc drugie rownanie

Zeby miec z niego a lub h .
Pozdrawiam
10 kwi 17:58
M4ciek: Podbijam
10 kwi 19:21
JOHNY: BARDZO PROSE "GENIUSZU"
NAUCZ SIE LICZYĆ .A NIE


!
10 kwi 19:27
JOHNY: ℛ
10 kwi 19:28
M4ciek: 
O Co Ci chodzi
10 kwi 19:29
JOHNY: hmmmmmmm
10 kwi 19:30
M4ciek:
10 kwi 19:31
M4ciek: Podbijam
10 kwi 19:39
Kejt: może coś z podobieństwa trójkątów..?
10 kwi 19:47
M4ciek: Tylko co?
10 kwi 20:06
Kejt: a skąd mam wiedzieć?

na Mateusza czekam(zadanie z chemii)..nie mam dziś głowy do matmy..
10 kwi 20:09
M4ciek: Może ktoś inny coś podpowie ?
10 kwi 20:10
Grześ: a to, że kąty między górną podstawą a przekątnymi są takie same. Zaraz to narysuje i pokażę
rozwiązanie
10 kwi 20:12
kachamacha: kąt między przekątną a krótszą podstawą jest równy α czyli mamy Δ równoramienny tak że ramię
jest równe górnej podstawie
10 kwi 20:13
10 kwi 20:15
kachamacha: i już dalej z górki
10 kwi 20:15
Grześ:

Teraz zależności:
x=2y
Czyli wysokość ma dł. h=3y, tylko teraz zastanawiam się jak się jej pozbyć...
10 kwi 20:20
Grześ: aaa.. fakt z Pitagorasa.. ale poszedłem na głeboką wodę

10 kwi 20:21
M4ciek: Tylko co mi daje te h = 3y

?
10 kwi 20:33
Kejt: Maćku.. patrz komentarz wyżej

(kachamacha)
10 kwi 20:34
M4ciek: | | 1 | |
A skąd się wzięła u kachamachy ta |
| ? |
| | 2 | |
10 kwi 20:45
M4ciek: Coś nie łapie
10 kwi 20:50
M4ciek: Może ktoś mi coś powiedzieć odnośnie tego Pitagorasa kachamachy?
10 kwi 21:05
10 kwi 21:05
M4ciek: A czaję już ehh
10 kwi 21:11
Iza: jak przekatna dzieli kat przy dluzszej podstawie na 2 rowne, a jedna podstawa jest 2 razy
dluzsza od drugiej, to zawsze ramie wynosi tyle co krotsza podstawa, w tym przypadku 2.
10 kwi 21:50
jarolcia: raniona mają długość a ponieważ kąty przy podstawie trójkąta są takie same.
i teraz korzystamy 2 razy z twierdzenia pitagorasa..
dla małego trójkąta przy ramieniu i dla trójkąta zawierającego wysokość przekątną i 3/4podstawy
10 kwi 21:58