| ⎧ | f(x)=arccos x g(x)=x | ||
| ∫ arccos x dx = | ⎩ | f'(x)=1√1−x2 g'(x)=1 | = |
| x | ||
= x arccos x − ∫ − | dx = x arccos x −
| |
| √1−x2 |
| ⎧ | f(x)=x g(x)=arccos x | ||
| − | ⎩ | f'(x)=1 g'(x)=−1√1−x2 | = x arccos x − x arccos x + |
| x | ||
∫ − | = (*) | |
| √1−x2 |
| dt | ||
dx= | ] | |
| −2x |
| x | dt | 1 | 1 | t1/2 | ||||||
(*) = − ∫ | * | =− | ∫ √t dt = − | ∫ t−1/2 = | +C | |||||
| √t | −2x | 2 | 2 | 1/2 |
| 1 | ||
Zauważ, że: dt = −2x dx ⇒ − | dt = x dx | |
| 2 |
| 1 | 1 | |||
teraz wstawiając mamy: − ∫ | * (− | ) dt | ||
| √t | 2 |