co jest tu nie tak?
Ania: Mam za zadanie obliczyć które wyrazy ciągu są ujemne
wzór ciągu jest taki:
a
n = (n − 4) (n − 7)
Podobno można to rozwiązać w ten sposób:
0 > (n − 4) (n − 7)
n=4
n=7
ale nie bardzo mi pasuje ta metoda bo jeśli np. napiszę odwrotnie
0 < (n − 4) (n − 7) i zamienię < na = to wyjdzie mi to samo, albo w ogóle napiszę 0 = (n − 4)
(n − 7) to tak samo, zresztą to ostatnie jest chyba najprawdziwsze bo rzeczywiście po
podstawieniu tych liczb wychodzi zero. Mógłby mi ktoś wyjaśnić gdzie tu jest błąd oraz jak
trzeba obliczyć które wyrazy ciągu są równe zeru, większe od zera i mniejsze od zera? Z góry
dzięki
jo: Rozwiązujesz nierówność a nie równanie więc rozwiązaniem będzie zbiór liczb...
(n−4)(n−7)<0 dzięki równości wychodzi rzeczywiście n=4, n=7 więc są to miejsca zerowe
funkcji kwadratowej, czyli wykresem jest parabola, ktorej ramiona skierowane są w górę... itp.
Zatem rozwiązanie: n∊{5, 6}.
Sprawdź czy wszystko się zgadza...