Szereg geometryczny
Melody: Rozwiąż równanie:
x+x√x+x2...=1
Oblicz sumę:
f(x)=x3+(x4+x3)+(x5+2x4+x3)+(x6+3x5+3x4+x3)...
27 mar 12:36
Godzio:
x ∊ <0,1)
| | x | |
S = |
| = 1 ⇒ x = 1 − √x √x = t
|
| | 1 − √x | |
t
2 = 1 − t
t
2 − t − 1 = 0
Δ = ... ,
√Δ = ...
| | 1 + √5 | | 1 − √5 | |
t1 = |
| lub t2 = |
| ∉ D
|
| | 2 | | 2 | |
27 mar 12:47
Godzio:
x
3(1 + (x + 1) + (x
2 + 2x + 1) + (x
3 + 3x
2 + 3x + 1) + ... ) =
= x
3(1 + (x + 1) + (x + 1)
2 + (x + 1)
3 + ... )
−1 < x + 1 < 1
−2 < x < 0
| | 1 | | x3 | |
f(x) = x3 * |
| = |
| = −x2 |
| | 1 − (x + 1) | | −x | |
27 mar 12:49
Melody: Dziękuje
27 mar 13:15