| x2 | (xarctgx)2 | 1 | ||||
∫( | )'arctg2xdx = | − ∫x2arctgx * | dx = | |||
| 2 | 2 | 1 + x2 |
| (xarctgx)2 | 1 | |||
= | − ∫arctgx * (1 − | )dx = | ||
| 2 | 1 + x2 |
| (xarctgx)2 | arctgx | (xarctgx)2 | ||||
= | − ∫arctgxdx + ∫ | )dx = | − (1) + (2) | |||
| 2 | 1 + x2 | 2 |
| x | ||
(1) = ∫arctgxdx = x * arctgx − ∫ | ||
| x2 + 1 |
| 1 | ||
2xdx = dt ⇒ xdx = | dt | |
| 2 |
| x | 1 | 1 | 1 | 1 | ||||||
∫ | = | ∫ | dt = | ln|t| = | ln|x2 + 1| | |||||
| x2 + 1 | 2 | t | 2 | 2 |
| 1 | ||
(1) = x * arctgx − | ln|x2 + 1| | |
| 2 |
| arctgx | ||
(2) = ∫ | )dx | |
| 1 + x2 |
| 1 | |
dx = dt | |
| 1 + x2 |
| arctgx | t2 | arctg2x | ||||
∫ | )dx = ∫tdt = | = | ||||
| 1 + x2 | 2 | 2 |
| x2 | (xarctgx)2 | 1 | arctg2x | |||||
∫( | )'arctg2xdx = | − x * arctgx + | ln|x2 + 1| + | |||||
| 2 | 2 | 2 | 2 |
| x2 | x2 | 1 | ||||
∫xarctgx dx = | arctgx − ∫ | * | dx | |||
| 2 | 2 | 1+x2 |
| x2 | 1 | 1 | 1+x2−1 | 1 | 1 | |||||||
∫ | * | dx = | ∫ | dx = | ∫(1 − | )dx = | ||||||
| 2 | 1+x2 | 2 | 1+x2 | 2 | 1+x2 |
| x | 1 | |||
= | − | arctgx + c. | ||
| 2 | 2 |
| x2 | x | 1 | 1 | x | ||||||
∫xarctgx dx = | arctgx− | + | arctgx + c = | arctgx(x2 + 1) − | + c. | |||||
| 2 | 2 | 2 | 2 | 2 |
| 1 | x |
| ||||||||||||||||
= [ | arctgx(x2 + 1) − | ]*arctgx − ∫ | dx = | |||||||||||||||
| 2 | 2 | x2+1 |
| 1 | x | 1 | x | |||||
= | arctg2x(x2 + 1) − | arctgx − | ∫(arctgx − | )dx = J. | ||||
| 2 | 2 | 2 | x2+1 |
| x | 1 | |||
∫arctgxdx = xarctgx − ∫ | dx = xarctgx − | ln|x2+1| + c. | ||
| x2+1 | 2 |
| 1 | x | 1 | ||||
J = | arctg2x(x2 + 1) − | arctgx − | [xarctgx − ln|x2+1|] + c = | |||
| 2 | 2 | 2 |
| 1 | 1 | |||
= | arctg2x(x2 + 1) − xarctgx + | ln|x2+1| + c. | ||
| 2 | 2 |