| 1 | 3 | |||
wykaż, że log4 | = − | a | ||
| 27 | 2 |
| 1 | ||
log4 | = log4 1 − log4 27 = 0 − log4 27 = − log4 27 = | |
| 27 |
| log2 27 | log2 33 | 3 log2 3 | 3a | |||||
= − | = − | = − | = − | |||||
| log2 4 | 2 | 2 | 2 |
| 1 | 1 | |||
log4 | = log4( | )3 = log43−3 = −3log43 | ||
| 27 | 3 |
| log23 | log23 | 3a | ||||
−3log43 = −3( | ) = −3( | ) = − | ||||
| log24 | 2 | 2 |