| x4 | ||
a)∫(x3+cosx)dx = ∫ x3 dx + ∫cosx dx = | +sinx + c | |
| 4 |
| 1 | 1 | |||
b)∫(√x+ | )dx = ∫x12 + ∫ | dx = U{x32{32} + lnx = | ||
| x | x |
| 2 | ||
x32+ lnx + c | ||
| 3 |
| 1 | 1 | 2x | ||||
c)∫(ex + 2x + | )dx = ∫ex dx + ∫2x dx + ∫ | dx = ex + | + tgx | |||
| cos2x | cos2x | ln2 |
| t10 | (2+x)10 | |||
a)∫(2+x)9 dx = | 2+x = t; dx=dt | = ∫ t9 dx = | +c = | + c | ||
| 10 | 10 |
| t52 | ||
b) ∫x√x−2 dx = |x−2 =t; dt = dx; x = t+2 | = ∫(t+2)√t * dt = | + | |
| 52 |
| t32 | 2 | 4 | ||||
2 | + c = | t2√t+ | t√t+c = | |||
| 32 | 5 | 3 |
| 2 | 4 | |||
(2+x)2(√2+x)+ | (2+x)(√2+x)+c | |||
| 5 | 3 |
| 4 | ||
V = π * 53∫( | )2dx | |
| x |
Jeśli liczymy objętość jakieś bryły powstałem przez obrót pewnej funkcji wokół osi OX na
odcinku [a,b] to wzór jest taki:
V = π * ba∫f2(x)dx
| x−1 | 1 | 1 | 1 | |||||
v=16π 53 ∫ x−2 dx = 16π [ | ]= −16π[ | ]= 16π( | − | )= − | ||||
| −1 | x | 5 | 3 |
| 2 | 32 | |||
16π(− | ) = | π | ||
| 15 | 15 |
oblicz pole obszaru zawarte miedzy liniami y =x2 i y=x+2
|D| = 2−1 ∫ (y+2 − x2) dx
| 1 | x2 | |||
V'= | v= | |||
| x | 2 |
| lnx | x2 | lnx | 1 | lnx | ||||||
= x2 * | − ∫ | x dx = x2 * | − | ∫ x dx = x2 * | − | |||||
| 2 | 2 | 2 | 2 | 2 |
| x2 | ||
+ c = | ||
| 2 |
| x2 | e2 | 1 | ||||
[ | *(lnx−1)]e1 + c = | *(lne−1)− | *(ln1−1)+c | |||
| 2 | 2 | 2 |