matematykaszkolna.pl
Wielomiany Dawid: Reszta z dzielenia wielomianu W przez dwumian x−1 jest rowan 2, a z dzielenia przez dwumian x−3 jesst rowna5. Podaj wielomian R(x), ktory jest reszta z dzielenia wielomianu W(x) przez (x−1)(x−3) Jak to to zrobic ? nie prosze tyle o wynik co o wyjasnienie jak to rozwiazac
24 lut 19:21
Dawid: up
24 lut 19:33
ICSP: Reszta z dzielenia wielomianu przez jakiś inny wielomian jest zawsze o stopień niższa od wielomianu przez który dzielimy. Ty dzielisz przez wielomian stopnia drugiego wiec reszta będzie stopnia pierwszego : ax + b w(x) = q(x)*p(x) + r(x) w(x) = q(x)*p(x) + ax + b. Ponieważ g(x) * p(x) = 0 zapisuję resztę z dzielenia np. przez dwumian x−1 następująco: 2 = a + b a drugie równanie z drugiej reszty 5 = 3a + b
24 lut 19:36
Dawid: p(x) tzn (x−1)(x−3) tak ? a mozesz powiedziec jak dojsc do tego 2=a+b i 5= 3a+b ?
24 lut 19:41
ICSP: w(x) = p(x)*q(x) + r(x) Jeżeli wystepuje reszta to znaczy ze wyrażenie p(x)*q(x) jest zerowe: w(1) = 0 + a (1) + b 2 = 0 + a + b w(3) = 0 + a(3) + b 5 = 3a + b
24 lut 19:45
Dawid: no ok ale dlczaczego zamiast w(1) masz 2 a zamiast w(3) 5 tego nie rozumiem skad sie bierze
24 lut 19:47
Dawid: aha ok juz kumam xD sorka i dziki za pomoc xD
24 lut 19:49
Dawid: juz chyba nie trybie coraz bardziej pasuje na dzisiaj xD
24 lut 19:49