matematykaszkolna.pl
adawdawdad qwerr: Rozwiaż równanie (x−1)3= 2(2x−1)+x2(x−3) i sprawdz czy rozwiązanie tego równania jest miejsce zerowym funkcji y=(2+1)x+1 Wychodzą mi dosyć dziwne wyniki, mógłby to ktoś rozwiązać ?
22 lut 13:21
zenon: a jakie masz wyniki?
22 lut 13:32
qwerr: x=2+13−2{2} Po usunięciu niewymierności z mianownika (nie iwem czy dobrze) 52+7
22 lut 13:41
zenon: a mi x = −1 − 2 a miejsce zerowe funkcji 2 − 1 czyli rozwiązanie równania nie jest miejscem zerowym danej funkcji
22 lut 13:47
qwerr: a mogłbys mi dokladnie napisać jak to liczysz ?
22 lut 13:52
zenon: tak przy okazji jeszcze pomyliłem miejsce zerowe, ok zaraz napiszę
22 lut 13:54
zenon: (x − 1)3 = 2(2x − 1) + x2(x − 3) x3 − 3x2 + 3x −1 = 22x − 2 +x3 − 3x2 3x − 22x = 1 − 2 x(3 − 22) = 1− 2
 1 − 2 
x =

 3 − 22 
 1 − 2 3 + 22 
x =

*

 3 − 22 3 + 22 
x = −1 − 2
22 lut 13:58
zenon: a miejsce zerowe 0 = (2 + 1)x + 1 −1 = (2 + 1)x
 −1 
x =

 2 +1 
x = 1 − 2
22 lut 14:01
qwerr: a mógłbyś mi jakoś wytłumaczyć niektóre wersy tych obliczeń ? 2 ostatnie, kiedy liczyles równanie 2 ostatnie w miejscuzerowym, jak znalazła się tam −1 i dlaczego się to skróciło.
22 lut 14:05
zenon: usuwam niewymierność z mianownika, zarówno w równaniu jak i miejscu zerowym, wymnóż sobie i sprawdź wynik, to samo z miejscem zerowym, pomnóż licznik razy (2−1) i zobacz czy wynik wyjdzie taki jak napisałem
22 lut 14:10
zenon: kurde licznik i mianownik razy (2−1) sory i wtedy będzie
 −1 2 − 1 2 + 1 
x =

*

=

= −2 + 1 = 1 − 2
 2 + 1 2 −1 2 − 1 
teraz jasne?
22 lut 14:16
qwerr: Czyli nie jest miejscem zerowym ?
22 lut 14:23
zenon: nie jest
22 lut 14:24
qwerr: a wiesz jak rozwiązać ten układ równań? |y+2|−2=4 3x−y=−6
22 lut 14:26
zenon: |y + 2| − 2 = 4 |y + 2| = 6 y + 2 = 6 lub y + 2 = −6 y = 4 y = −8 teraz podstawiasz
22 lut 14:30
qwerr: Przedyskutuj liczbę rozwiązań równania k2(x−1)−p=k(2+x−k) w zależności od wartości parametrów p i k w przypadku istnienia rozwiązania wyznacz je i przedstaw w najprostszej postaci. Kompletnie nie wiem jak za to się zabrać. Na lekcji przerabialismy równianie tylko z 1 parametrem, jeżeli będziesz miał czas to pomóż mi to rozwiązać, a potem sprawdzić czy dobrze zrobiłem inne zadanie właśnie z 1 parametrem.
22 lut 14:37
zenon: wiesz co mi zadanie zajęłoby trochę czasu, wrzuć jako oddzielne zadanie, ktoś inny pomoże, po za tym ja już uciekam
22 lut 14:41