mam taki przyklad:
| x2−3 | ||
f(x)= | Df=R−{2} | |
| 2x−4 |
| x2−3 | x(x−3/x) | |||
lim | = | =∞ − asymptota pionowa prawostronna | ||
| 2x−4 | x(2−4/x) |
| x2−3 | x(x−3/x) | 1 | ||||
lim | = | =− | − brak asymptoty pionowej lewostronnej ![]() | |||
| 2x−4 | x(2−4/x) | 8 |
| x2−3 |
| |||||||||||||||
lim | = | =∞ asp. pozioma prawostronna | ||||||||||||||
| 2x−4 |
|
| x2−3 |
| |||||||||||||||
lim | = | =−∞ asp pozioma lewostronna | ||||||||||||||
| 2x−4 |
|
| x2 − 3 | ||
f(x) = | , Df: x∊R\{2} | |
| 2x − 4 |
| x2 − 3 | 1 | |||
limx→2− | = { | } = −∞ | ||
| 2x − 4 | 0− |
| x2 − 3 | 1 | |||
limx→2+ | = { | } = +∞ | ||
| 2x − 4 | 0+ |
| x2 − 3 | ||
limx→−∞ | = −∞ | |
| 2x − 4 |
| x2 − 3 | ||
limx→+∞ | = +∞ | |
| 2x − 4 |
| 1 | ||
i wtedy a = limx→±∞ ( f(x) * | ) oraz b = limx→±∞ ( f(x) − a*x ) | |
| x |
| x2 − 3 | 1 | 1 | ||||
limx→±∞ ( | * | ) = | , a więc istnieje asymptota ukośna, | |||
| 2x − 4 | x | 2 |
| 1 | ||
a = | ||
| 2 |
| x2 − 3 | 1 | |||
b = limx→±∞ ( | − | x ) = 1. | ||
| 2x − 4 | 2 |
| 1 | ||
Asymptota ukośna dwustronna: y = | x + 1 | |
| 2 |