| 2n+3 | ||
2. ∑n=1 7n ( | )n2 | |
| 2n+6 |
| sinx | lnx | |||||||||
= lim xtgx*( | )tgx = lim xtgx = lim etgxlnx = lim exp( | ) = | ||||||||
| x |
|
| lnx |
| ||||||||||||
= lim exp( | ) = H = lim exp( | ) = | |||||||||||
| ctgx |
|
| sin2x | sinx | |||
= lim exp(− | ) = lim exp(−sinx* | ) = lim e−sinx = e0 = 1. | ||
| x | x |
| Re(z) | ||
cosφ = | = −U{√3{2} | |
| |z| |
| Im(z) | ||
sinφ = | = U{√1{2} | |
| |z| |
| 5π | ||
φ = | ||
| 6 |
| 5π | ||
z = 2exp(i | ) // exp(x) to dalej ex ![]() | |
| 6 |
| 5π | ||
z2 = 4exp(i | + i2kπ) | |
| 3 |
| 5π | 2kπ | |||
3√z2 = 3√4*exp(i | + i | ), k ∊ {0, 1, 2} | ||
| 9 | 3 |
| √3 | ||
cosφ = − | ||
| 2 |
| 1 | ||
sinφ = | ![]() | |
| 2 |