| 1 | ||
1.∫ | ||
| (cos23x)(2+tg23x) |
| 1 | ||
2.∫ | dx
| |
| 2+sinx |
| 3x+2 | ||
3.∫ | ||
| √x2+3x+5 |
| 1 | ||
Umiesz cos2(3x) zamienić na postać | ? | |
| 1 + tg2(3x) |
| cos2 | cos2α | |||
cos2α = | = | = (dzielę licznik i mianownik przez cos2α) | ||
| 1 | sin2α + cos2α |
| 1 | ||
= | ||
| tg2α + 1 |
| 1 | ||
∫ | dt | |
| 1 + cos23x |
| 1 | ||
3dx = | dt | |
| 1 + t2 |
| 1 | 1 | |||
cos23x = | = | |||
| 1 + tg2(3x) | 1 + t2 |
| 1 | 1 | t2 + 1 | ||||||||||||||||||
= | = | |||||||||||||||||||
|
| t2 + 2 |
| 1 | t2 + 1 | 1 | 1 | 1 | |||||
∫ | * | dt = | ∫ | dt = | |||||
| 3 | t2 + 2 | 1 + t2 | 3 | t2 + 2 |
| 1 | 1 | ||||||||||||
= | ∫ | dt = ... | |||||||||||
| 6 |
|
| t | |
= u | |
| √2 |
| 1 | |
dt = du | |
| √2 |
| √2 | 1 | √2 | ||||
... = | ∫ | du = | } * arctgu + C = | |||
| 6 | u2 + 1 | 6 |
| √2 | t | √2 | tg3x | ||||
* arctg | + C = | * arctg | + C | ||||
| 6 | √2 | 6 | √2 |
| 1 | ||
∫ | dx | |
| 2 + sinx |
| 2sinx2cosx2 | ||
sinx = 2sinx2cosx2 = | = | |
| 1 |
| 2sinx2cosx2 | ||
= | dzielę przez sinx2cosx2 | |
| sin2x2 + cos2x2 |
| 2 | 2 | ||||||||||||
= | = | mnożę licznik i mianownik | |||||||||||
| tgx2 + ctgx2 |
|
| 2tgx2 | ||
przez tgx2 = | ||
| tg2x2 + 1 |
| 2t | ||
tgx2 = t ⇒ sinx = | ||
| t2 + 1 |
| x | |
= arctgt | |
| 2 |
| 1 | 1 | ||
dx = | dt | ||
| 2 | 1 + t2 |
| 2 | ||
dx = | dt | |
| 1 + t2 |
| 1 | 1 | 2 | |||||||||||||
∫ | dx = ∫ | * | dt = | ||||||||||||
| 2 + sinx |
| 1 + t2 |
| t2 + 1 | 2 | 1 | ||||
∫ | * | dt = ∫ | dt | |||
| 2t2 + 2t + 2 | t2 + 1 | t2 + t + 1 |
Dzięki za wytłumaczenie