miejsc zerowe wielomianu
ich: x3 − 3x2 + 4
9 lut 18:06
bart: podziel przez x+1
9 lut 18:20
Mila: sprawdzam dzielniki wyrazu wolnego czyli 4 pierwiastkiem jest x=2 bo dla 2 wielomian=0
x=2 W(2)=23−3*22+4=8−12+4=0
czyli wielomian dzieli sie przez x−2
x2−x−2
x3−3x2+4 : (x−2)
−x3+2x2
−x2+4
x2−2x
−2x+4
+2x−4
x3−3x2+4=(x2−x−2)(x−2)
można Δ liczyć i pierwiastki albo znów sprawdzic dziwlniki wyrazu wolnego
dla x=2 W(2)= 22−2−2=0
x+1
x2−x−2 : (x−2)
−x2+2x
x−2
−x+2
x2−x−2=(x−2)(x+1)
x3−3x2+4=(x−2)(x−2)(x+1)
x=−1 x=2 pierwiastek dwukrotny
9 lut 18:23