Jak to uprościć?
Konik_90: | | 3(x3+2x)2*(3x2+2)*(x2−2x+2)4−(x3+2x)3*4(x2−2x+2)3*(2x−2) | |
|
| |
| | (x2−2x+2)8 | |
8 lut 17:57
kachamacha: w liczniku wyłącz przed nawias (x
3+2x)
2(x
2−2x+2)
3
| (x3+2x)2(x2−2x+2)3[3(3x2+2)(x2−2x+2)−4(x3+2x)(2x−2)] | |
| = |
| (x2−2x+2)8 | |
| | (x3+2x)2[3(3x2+2)(x2−2x+2)−4(x3+2x)(2x−2)] | |
= |
| = |
| | (x2−2x+2)5 | |
i dalej można zacząć porządkować nawias kwadratowy
8 lut 18:08
Konik_90: Pytanko mam do tego skrócenia (x
2−2x+2)
3 z mianownikiem
| | ax | |
myślałem, że według tego wzoru |
| = ax−y w mianowniku pojawi się wynik |
| | ay | |
(x
2−2x+2)
−2
8 lut 19:01
kachamacha: nie nie
"zabierasz" z licznika i mianownika (..)3 czyli w liczniku nie ma już a w mianowniku zostaje
jeszcze 5 (8−3=5)
8 lut 19:03
Konik_90: czy nie tak powinno być w mianowniku
(x2−2x+2)−5
8 lut 19:03
Konik_90: ahaa kumam
8 lut 19:04
Konik_90: Dzięki wielkie sporo czasu temu to miałem i powylatywały mi te rzeczy
8 lut 19:06