| cosx | 2+lnx | |||
xcosx * ( | − sinx lnx ) + | |||
| x | 2√x |
| 1 | cosx − sinx −1 | ||
+ | |||
| x√1−x2 | 2−2cosx+2sinx−sin2x |
| 1 | ||
−x(−x−2) * (lnx+1) + e( | ) * (x2+2x) | |
| x |
| x | cosx − sinx − 1 | ||
+ | |||
| √x2 − x4 | 2(1+sinx)(1−cosx) |
| (2x2)`*(2−x)2−(2−x)2`*2x2 | ||
= | =
| |
| (2−x)4 |
| 4x*(x2−4x+4)−2*(2−x)*2x2 | ||
= | =
| |
| (2−x)4 |
| 16x+16x2+4x3−8x2−4x3 | ||
= | =
| |
| (2−x)4 |
| 8x3−24x2+16x | ||
= | =
| |
| (2−x)4 |
| x*(8x2−24x+16) | ||
= | =
| |
| (2−x)4 |
| 8x(x−1)(x−2) | ||
= | =
| |
| (2−x)4 |
| 8x(x−1) | ||
= | ||
| (2−x)3 |