| 1 | ||
( | − 1 )2 − (tgx − sinx)2 + 2cosx = 1 + cos2x | |
| cosx |
| 1 | ||
L = ( | − 1 )2 − (tgx − sinx)2 + 2cosx = | |
| cosx |
| 1 | 2 | sin2x | sin2x | ||||
− | + 1 − | + 2 | + sin2x + 2cosx = | ||||
| cos2x | cosx | cos2x | cosx |
| 2 | sin2x | |||
1 + 1 − | + 2 | + sin2x + 2cosx = | ||
| cosx | cosx |
| 1−cosα | sinα−sinαcosα | 2cos3α | ||||
L= ( | )2−( | )2+ | = | |||
| cosα | cosα | cos2α |
| (1−cosα)2−sin2α(1−cosα)2 + 2cos3α | |
= | |
| cos2α |
| (1−cosα)2(1−sin2α)+2cos3α | |
= | |
| cos2α |
| (1−cosα)2*cos2α+2cos3α | |
= | |
| cos2α |
| cos2α*[(1−cosα)2+2cosα] | |
= | |
| cos2α |
?
| sinx(1−cos) | sin2x(1−cosx)2 | |||
mam ( | )2 = | |||
| cosx | cos2x |

?





?