| 1 | ||
ctgx zastąp | ||
| tgx |
| sin2x | cosx | sinx*sin2x−cosx*cos2x | ||||
tg2x−ctgx = | − | = | = | |||
| cos2x | sinx | sinx*cos2x |
| −(cosx*cos2x−sinx*sin2x | −cos(x+2x) | ||
= | = 0 ⇔ | ||
| sinx*cos2x | sinx*cos2x |
| 2kπ±π2 | 2kπ | π | 4kπ±π | (4k±1)π | ||||||
x = | = | ± | = | = | ||||||
| 3 | 3 | 6 | 6 | 6 |
| (4k±1)π | (4k±1) | |||
dla x = | sinx ≠0 bo | nigdy nie będzie liczbą całkowitą | ||
| 6 | 6 |
| (4k±1)π | ||
cos2x=cos | ||
| 3 |
| 2(4k±1) | 3(2m+1) | ||
= | |||
| 6 | 6 |
| (4k±1)π | ||
x= | ||
| 6 |
| π | π | π | ||||
tg2x = ctgx, Założenia: 2x ≠ | + kπ ⇒ x ≠ | + k* | i x ≠ k*π, k∊C | |||
| 2 | 4 | 2 |
| π | π | π | ||||
tg2x = tg( | − x) ⇒ 2x = | − x + k*π ⇒ 3x = | + k*π | |||
| 2 | 2 | 2 |
| π | π | |||
x = | + k* | |||
| 6 | 3 |
| 2tgx | ||
tg2x= | ||
| 1−tg2x |
| 1 | ||
ctgx= | ||
| tgx |
| π | π | |||
tg x≠0 i tgx≠ 1 i tgx≠ −1 => x≠ k*π i x≠ | +k*π i x≠ − | =k*π, k€C
| ||
| 4 | 4 |
| 1 | ||
tg2x= | ||
| 3 |
| √3 | √3 | |||
tgx= | lub tgx= − | |||
| 3 | 3 |
| π | π | |||
x= | +k*π lub x= − | +k*π , k€C | ||
| 6 | 6 |